本书从金融数据挖掘的数据整理(cluster and classification)和重抽样方法(resampling)开始,介绍了模型的筛选方法(selection methods)、克服高维灾难(disaster of dimensionality)的方法,以及非线性模型(non-linear models)、非参数估计(unsupervised estimation)、决策树(tree-based methods)和支持向量机(support vector machines)等数据挖掘方法,并在后面介绍了R语言的基本操作。 本书的案例均采用股票市场数据来进行数据挖掘分析,利用简明实用的一些数据挖掘方法来诠释金融数据挖掘的魅力,以期每一名本书的读者都够掌握一些本书介绍的方法,并应用于股票市场投资当中去。当然,正像所有投资书籍及投资机构都会提到的一样,本书也必须指出,“投资有风险,挖掘需谨慎”。
阅读更多
漫游鲸二手书店
微信扫码去买书
扫码访问微信小程序